**Arkansas Curriculum Frameworks**. Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. Probability word problems worksheets. Read More...

with Math Worksheet Generator

Study GuideIntroduction to ProbabilityWorksheet/Answer key

Introduction to ProbabilityWorksheet/Answer key

Introduction to ProbabilityWorksheet/Answer key

Introduction to ProbabilityWorksheet/Answer keyIntroduction to Probability

AR.Math.Content.7.SP. Statistics and Probability

AR.Math.Content.7.SP.C. Investigate chance processes and develop, use, and evaluate probability models.

AR.Math.Content.7.SP.C.5. Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.

AR.Math.Content.7.SP.C.6. Collect data to approximate the probability of a chance event. Observe its long-run relative frequency. Predict the approximate relative frequency given the probability. For example: When rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.

AR.Math.Content.7.SP.C.7. Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.

AR.Math.Content.7.SP.C.7.A. Develop a uniform probability model, assigning equal probability to all outcomes, and use the model to determine probabilities of events (e.g., If a student is selected at random from a class of 6 girls and 4 boys, the probability that Jane will be selected is .10 and the probability that a girl will be selected is .60.).

AR.Math.Content.7.SP.C.7.B. Develop a probability model, which may not be uniform, by observing frequencies in data generated from a chance process (e.g., Find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?).

Standards