Thursday, October 23, 2014

Manufacturer's Claims

ComNavOps has pointed out in previous posts and numerous comments that manufacturer’s performance claims are almost always significantly over exaggerated.  History guarantees this with near 100% certainty.  Despite this, many people continue to latch onto manufacturer’s claims while discussing weapons and systems. 

The LCS was the poster child for this phenomenon for the longest time.  Supporters would continually fall back on PowerPoint-ish claims of capabilities to defend the program.  Of course, the LCS has now gotten to the point where even the most ardent defender has pretty much admitted that the LCS isn’t ever going to do all those wonderful things that were promised.

Historically, we’ve noted the abject failure of the USN’s WWII torpedo, the Sparrow missile, Soviet SAM systems, and so on.

More recently, the JSF has taken over as the poster child for manufacturer’s claims.  The list of things the F-35 will do is simply amazing, bordering on magical.  Of course, at the moment, after two decades of development, the plane can barely (and only sporadically) get off the ground and then only utilizing a multitude of workarounds to get past the maintenance software fail safes.  Despite an unbroken history of weapon systems failing to live up to their billings the JSF true believers still cite the wonders of the future JSF.

Here’s the most recent example – the Mk110 57mm naval gun that’s mounted on the LCS.  You remember the glowing claims about this gun, don’t you?  It would singlehandedly decimate scores of small boats and transform littoral warfare.  Of course, ComNavOps noted long ago that the only publicized tests involved shooting a land mounted gun at a fixed, unmoving small boat on what appeared to be an isolated lake or inlet.  The result was a bunch of pinholes appearing in the boat which seemed totally insufficient to sink the boat.  Still, the Navy bought in on the hype and outfitted the LCS with the Mk110 without even providing radar fire control for it – just EO guidance. 

Mk110 - Debunked

Anyway, it turns out that the Mk110 has significant reliability and performance problems on the LCS as documented by various reports.  As if that’s not bad enough, it turns out that the Mk110 is rendered ineffective due to vibration when the LCS is at any speed.  To be fair, that’s probably more of an LCS structural design issue than a gun failing.

Now, though, it turns out that the Zumwalt program looked at the Mk110 and decided that it lacks the lethality needed to stop small boats and they’ve opted, instead, to select a smaller 30 mm gun.  So, the main claim of small boat lethality turns out to have been vastly overstated – just as the history of manufacturer’s claims have shown.  Who could have seen that coming?  Well, anyone who reads this blog, I guess.

Is my point to beat up on the Mk110?  No.  My point is that here is yet another example in an almost unbroken chain of examples where the manufacturer’s claims were significantly overstated.

We must begin to recognize this phenomenon as we discuss weapons and systems.  We have to stop blindly citing claims with no allowance for reality.  For example, the F-35 isn’t going to do all those wonderful things.  It may, eventually, do some of them to a partial degree – and that’s the best case.  ComNavOps offers this blog, in part, to educate readers about the realities of war and weapon systems.  This phenomenon is one of those realities.

As bad as it is when outside observers, like us, opt to wholeheartedly and blindly believe manufacturer’s claims, that’s just an irrelevant side issue.  The real impact is when our professional, uniformed military leaders wholeheartedly and blindly buy in to manufacturer’s claims.  Someone in the Navy bought into the manufacturer’s claims about the Mk110 without looking critically at the claims and the testing.  Along comes the Zumwalt program and their folly is exposed.  [A salute to someone in the Zumwalt program, by the way.  Now, I hope they’re carefully scrutinizing the 30 mm claims!]  The Navy bought into the LCS claims.  The Navy bought into the JSF claims.  And so on.

Whatever the next great program is, ComNavOps can already predict with near 100% certainty that it won’t work as claimed.  I don’t even need to know what the program is.  There’s a simple lesson to be learned here that’s supported by overwhelming historical evidence, right up to current events, and yet the Navy refuses to learn.  If you hit me on the head 37 times in a row with that board you’re holding after promising each time that you wouldn’t, isn’t it kind of stupid of me to believe you the 38th time?  And yet the Navy keeps believing!

Wednesday, October 22, 2014

LRASM and Targeting

Let’s follow up on the Long Range Anti-Ship Missile (LRASM) a bit, shall we?  For the sake of this discussion, let’s assume that we now have a 500 nm, ship launched (VLS), high subsonic missile that doesn’t, yet, have complete and fully functional autonomy.  In other words, it’s a missile like all the rest of our missiles.  It requires a destination (target) and then it can use it’s own on-board sensors (short range radar and/or EO) for final guidance.  That’s exactly what ComNavOps suggested ought to be produced in the previous post as an interim product while the fantasy autonomy was being perfected.

So, we have a missile.  Somewhere out there we think there might be a surface target.  How do we find the target (the right target!) and generate a shooting solution? 

Well, the first possibility is the ship’s own radar, Aegis/AMDR.  Unfortunately, the detection range will be on the order of 50 nm (the Navy has declined to tell me the exact detection range in this scenario).

Another possibility is a carrier AEW Hawkeye.  Two problems here, though.  One is the range is still limited to probably around 150 -200 nm.  Yes, the claimed detection range of the APS-139/145 radar is 300+ nm but that’s for large airborne, non-stealthy targets.  A semi-stealthy ship (and every ship built today is semi-stealthy) in the “ground clutter” of the ocean’s surface is not going to be detected at anywhere near those ranges.  The second problem is that if we’re going to be dependent on a Hawkeye then that means that our LRASM is only effective as part of a carrier group.

Of course, we could always postulate that we extend the Hawkeye’s location out a couple hundred miles in the direction of the anticipated threat.  However, since we’re going to launch a missile, presumably we’re at war.  That means that the enemy will be busy doing pesky little things like shooting down Hawkeyes that stray away from the protection of the carrier group.  In fact, the reality is that the Hawkeye may actually operate somewhat behind the group for greater protection.  So, I guess that option is out. 

Satellites?  They don’t generate shooting solutions despite what popular belief might hold.

Submarines?  Possible, though that’s a very unreliable, hit and miss proposition complicated by the difficulty the sub would have transmitting targeting data without giving up its location.

The ship’s own helos?  Helos have relatively short ranged radars and extending their location carriers the same risk as the Hawkeye.  It’s just not realistic to send a helo a few hundred miles out to attempt targeting.

UAVs?  That’s a possibility.  I don’t think we have a surface ship launched UAV with the requisite range, sensors, and stealth but such a UAV could possibly be developed.

Passive sensing?  That’s a very real possibility but would involve triangulation of multiple sensor sources.  This is, at least partly, what I believe the Navy’s OUBOARD/COBLU system is designed to do.  The actual capabilities of the system are not public knowledge so I have no basis to comment further.

F-35?  Well, here’s an option that has some possibility.  A stealthy, survivable aircraft that can operate on its own and penetrate enemy air coverage and defenses would be just the ticket for this type of targeting challenge.  This may be a mission the F-35 could excel at.  Of course, as with the Hawkeye, this ties the LRASM to F-35A land bases or F-35C carriers and limits our ability to operate our surface ships offensively on their own.  This also assumes that the F-35 works as advertised which it does not, as yet.  Aside from stealth and flight issues, the F-35 apparently lacks a “stealth” means of communication to transmit targeting data, as we’ve discussed in previous posts (see, "Can Anyone Talk To The F-35?").

Hopefully, by now you’re getting the idea.  A weapon is only half the problem.  The other, and more important and more challenging, half is targeting (see, "Weapons Don't Matter!").  There’s no point having a 5,000 nm missile if you can’t reliably target beyond 50 miles.  [that’s why the Chinese “carrier killer” is a joke]  So, am I suggesting that we only design short range missiles and abandon the LRASM?  No!  I’m suggesting that we give equal thought to development of targeting capabilities and development of appropriate tactics that will enable long range targeting.

The astute among you will have noticed that I haven’t addressed target discrimination.  It’s not enough to simply detect a “blip” a few hundred miles out.  You also have to know whether that blip is friendly, neutral, or hostile.  Generally, that means getting the detecting platform and sensor even closer to the enemy – a difficult problem becomes even more difficult.

I’ve also not addressed the use of air launched LRASM.  That’s a separate topic with its own considerations.

Sunday, October 19, 2014

Network Contradiction?

As ComNavOps has perused the reports about various weapon systems, one common aspect has stood out and that is the Navy’s heavy betting (all in?) on networks, data links, sophisticated communications over long ranges, common tactical pictures, mid-course guidance, and, in general, all forms of electronic networking.  In short, the Navy’s vision of warfare is a completely networked battle force where every asset is a node and all nodes know everything that any node knows.  The corollary to this is that any weapon or system can control any other weapon or system.  This leads to seemingly idiotic statements of conceptual capability such as submarines guiding AAW missiles launched from some other platform.

What are examples of the Navy’s obsession with network warfare?  Well, you’ll recall the recent post discussing electromagnetic maneuver warfare in which the Navy would develop a fleet wide electromagnetic battle management network?  Or, how about the LCS which was supposed to have utilized a rapidly deployable sensor net?  Or, how about the oft-repeated descriptions of the LCS as nodes in a battle management network?  Or, the entire Co-operative Engagement Capability (CEC)?  Or, the brilliant NLOS munitions that were supposed to have dynamically networked themselves to allocate targeting in real time?  I won’t bother citing any more examples as the media is full of stories of various Navy weapons and systems being described as networks or components of networks.

The implied requirement in this approach is that the Navy must have totally uncontested command of the entire electromagnetic spectrum.

This brings the discussion to the Long Range Anti-Ship Missile (LRASM).  LRASM is currently in development under a DARPA research contract.  The contract concludes in 2016 at which time the Navy is expected to provide funding for production.  The LRASM is expected to be ready for use by B-1 bombers in 2018 and F/A-18E/F's in 2019.  A VLS-compatible ship launched version is also under development.  Developmental and initial production contracts have been, and are expected to continue to be, sole-sourced to Lockheed Martin (LM).

As a reminder, the basis for the LRASM is the JASSM-ER which is currently in production and approved for use by the Air Force's B-1 bomber.  The missile will use multiple RF and EO sensors for target location, missile navigation, and terminal guidance.  The business end of the missile is a "1000 lb penetrating blast/fragmentation warhead".  Missile range is stated as 500 nm.

As a point of reference, Military and Aerospace Electronics website has an excellent article summarizing the history and status of the LRASM (1).  Beware, though, and note that the article is full of glowing statements of success, all from a LM VP.  Here’s a quick example,

"... JASSM offers what some people have called 'eye-watering' stealth capabilities ..."

Anyway, back to the point of this post …  One aspect of the LRASM program stands out as related to subject of this post and that is the completely different approach that this weapon takes toward networks and communications.  Consider the following snippets describing the features of the LRASM.

"... mission effective in satellite-enabled, satellite-constrained, and satellite-denied environments ..."

"... network enabled, but not network dependant ..."

"... navigation and control with GPS denial ..."

The common theme is that they all recognize that communications, whether for networking, data links, or guidance may well be disrupted and that the missile needs to be able to operate in an electromagnetically contested environment.  This is exactly the opposite of most current and envisioned Navy programs.  It’s also the realistic view of war against a peer.  The Navy has Growlers and shipboard ECM capability designed to disrupt enemy communications, guidance, and networking.  Do we really think the enemy won’t apply similar measures against us?  An enemy will shoot down GPS satellites, disrupt GPS signals, disrupt communications, jam frequencies, initiate cyber attacks, and so on, just as we will.  To design weapons and systems that are dependent on electromagnetic dominance is folly.  Fortunately, in this case, someone has recognized reality and is designing a weapon that can deal with electromagnetic disruption. 

LRASM - Network Independent

Of course, the result of loss of communications is that the weapon or system must function autonomously.  For an unmanned system, be it missile or UAV, that’s quite a software challenge.  The risk in LRASM development is that the entire program may be delayed for inordinate amounts of time trying to prefect the required degree of autonomy.  It might be advisable to field fully functional increments of the missile that contain more sophisticated autonomy over time rather than try to achieve the final product all at once.  For example, a fully functional anti-ship missile with 500 nm range would be a welcome addition to the fleet right now, even without autonomous capability.  I don’t know the status of the programming effort or the developmental plans for autonomy so I can’t comment about whether it’s being developed wisely or not.  We’ll have to keep an eye on this aspect of the LRASM.

Networking is one of those ideas that is appealing on paper but generally results in an overly complicated and, as a result, unworkable system in real life. 

Complexity = Unreliability

It’s as simple as that.  Whether it’s an Aegis system that is degraded fleetwide because it’s too complex to maintain, a Ship Self Defense System that is unworkable after years of development, or an LCS whose every module has failed due to overly complex and unachievable technology, complexity leads to failure.

Now, am I saying that the Navy should abandon the LRASM because it’s complex?  No.  There’s nothing wrong with pursuing complexity as a research effort – just don’t do it as the cornerstone of a badly needed production program.  As I stated earlier, field the LRASM as an incremental program that delivers usable products along the way (unlike the F-35).

So, why is the Navy taking a realistic approach to the LRASM in the sense of not basing it on unrealistic, fantasy networks while pursuing exactly those types of networks for so many other programs?  I don’t know.  That’s the contradiction demonstrated by this program.

(1) Military and Aerospace Electronics, "Back into the blue: LRASM honed for extended reach, precision punch", 2-Oct-2014,

Friday, October 17, 2014

F-35B/C Cost

Continuing our cost data series, here are the costs for USN F-35 procurement.  The numbers include both the “B” and “C” versions without breaking them out.

Shown below is the quantity purchased and the unit price as reported by the Office of the Undersecretary of Defense (1)

FY 2011  qty=10  $269M each
FY 2012  qty=13  $282M each
FY 2013  qty=10  $258M each

As before, no point – just data.

(1) “FY 2013 Program Acquisition Costs By Weapon System”, Office of the Undersecretary of Defense (Comptroller)/Chief Financial Officer, Feb 2012

Thursday, October 16, 2014

F-35A Cost

Here are some interesting acquisition costs for the Air Force’s F-35A, as taken from the Department of Defense, Fiscal Year (FY) 2013 President’s Budget Submission, Feb 2012, Air Force, Justification Book Volume 1, Aircraft Procurement, Air Force.  The costs are reported in the document as “Total Flyaway Cost”.

Prior Years (25 aircraft)        $215M each

2011  (25 aircraft)                 $159M each

2012  (18 aircraft)                 $171M each

2013  (19 aircraft)                 $160M each

I don’t know what time period the Prior Years covers.

Engines are included in the cost.

No point to the post – just data.

Wednesday, October 15, 2014

F-35 Engine Cost

It’s always difficult to determine costs for various weapons and systems.  Here’s an example that appears to be relatively straightforward.  From a Defense News website article we see the costs for the next batch of F-35 engines (1).

“The cost of the modifications are included in the contract for LRIP 7, which was also awarded Tuesday. That award was for $592 million. When added to a previously awarded sustainment contract from last December, the total cost for LRIP 7 comes in at $943 million in funding for Pratt.

The lot covers 36 engines, as well as associated management and support.”

As I read this, the engine production cost is $592 for 36 engines which is $16.5M per copy.  The engine acquisition cost, including “management and support”, whatever that is, is $943M which is $26.2M per copy. 

Since you can’t, apparently, buy engines without “management and support”, the actual cost of an F-35 engine is $26.2M per copy.

No point to this post – just data.

(1) Defense News, “Pentagon, Pratt Cut Deal for F-35 Engines, Modifications”, Aaron Mehta, Oct. 15, 2014, 

Monday, October 13, 2014

Air Wings - 2014 Update

Here’s the latest carrier air wing update.  Data is from the Sep 2014 issue of Proceedings and is current as of May 2014.

Here are the current air wings with data showing the number of combat aircraft (Hornets) followed by the number of supporting aircraft and helos (Hawkeyes –typically 4, Growlers – typically 5, and MH-60x – highly variable numbers) and, finally, the total air wing count.

CVW-1  (Roosevelt)             44, 15, 59
CVW-2  (Reagan)                 34, 24, 60
CVW-3  (Truman)                  44, 28, 72
CVW-5  (Washington)          46, 25, 71
CVW-7  (Eisenhower)          44, 18, 62
CVW-8  (Bush)                      44, 28, 72
CVW-9  (Stennis)                  44, 29, 73
CVW-11  (Nimitz)                  44, ?, ?      (data incomplete)
CVW-17  (Vinson)                44, 27, 71

After a one year reprieve, CVW-14 has been slated for deactivation leaving the Navy with just 9 air wings.  When the Ford joins the fleet, the Navy will have 11 carriers and 9 air wings.  Allowing for one carrier always in long term maintenance/refueling, that still leaves one carrier without an air wing. 

CVW-2 is listed as having only 34 Hornets.  I don’t know if this is a case of a squadron being inadvertently left out of the listing or if its real.

Air wings also include a COD detachment during deployment but the aircraft are not considered part of the air wing.

Note the large variation in helos.  The reason for this is unknown but several of the wings have an extra squadron of helos.  If not for the extra squadron, the wings would total right around 60 as with CVW-1 and -7.

Note that the combat aircraft count includes the 4-6 Hornets that are always in use as tankers and, therefore, unavailable for combat, thereby reducing the combat aircraft count to around 38-40.