You may recall that on 16-Nov-2013 the Aegis cruiser
Chancellorsville, CG-62, was struck by a rogue drone during a tracking exercise (see, Chancellorsville). The drone penetrated the ship’s side causing
various fires though, fortunately, no deaths.
The Navy’s investigative memos, made available through Freedom of
Information Act (FOIA) requests and presented on a Navy website, offer some
interesting aspects for consideration.
The investigation revealed all the usual suspects associated
with any disaster: poor communications,
violation of standards, ignorance of facts about equipment and procedures, lack
of preparation, failure to anticipate the worst case scenario, equipment
failure, misjudgments, and so on. I’m
not going to bore you with a recitation of the details because, frankly, they read
exactly the same as for any and every other accident and there is nothing
worthwhile in them. Reports have been
written, endless recommendations have been made (closing the barn door after
the horse is out), and the same incident will, inevitably happen again sometime
because no real change will occur. So,
moving on …
|
Chancellorsville Drone Strike |
As a reminder, here is a brief description of the drone from
the report memos.
…
the BQM-74E ia an aerial target drone produced by Northrup Grumman. It is
turbine-powered, recoverable, remote controlled, and subsonic. It. is capable
of speeds up to Mach .86 or 515 knots at sea level. It is 12.95 feet long, 5.78
feet wide, weighs 455 pounds, and resembles a small Tomahawk cruise missile,
though is painted bright orange. (1)
On a macabre note, the test range personnel issued a “Rogue Drone”
call 17 seconds AFTER the drone struck the ship.
The
drone struck the ship at 13:14:00. The Test Conductor called "Rogue
Drone" at 13:14:17. (1)
While there was plenty of failure on the part of the ship’s
company to anticipate, observe, and engage the rogue drone, I’d like to focus
on the drone control failure. The drone
is controlled by the test range System for Naval Target Control (SNTC). From the report,
The
SNTC consists of the following major components: Master control Consoles
(MCCs). Target control Consoles (TCCs). Ground Radio Frequency Units (GRFUs).
UHF antennas, GPS antennas, Model 53 Portable Test Set (PTS), Model 280-l UHF
Transponders, Shipboard Transponders, Airborne Relays and associated ancillary
equipment. The SNTC provides system operators with a Microsoft Windows based
interface enabling system configuration and control. (1)
On a more complex scale, this is the equivalent of the
handheld controller that you would use to control a remote control model
airplane.
I’d now like to look a few specific aspects of the incident.
Network Issues – “The investigation determined that the SNTC
was incorrectly configured and caused a significant increase in network message
transmissions and system instability.” (1)
On a relative basis, the networking involved in controlling
a target drone is about as simple as it gets.
Further, this network had been in use for some time. Despite this, the network failed, to an
unspecified degree. How many times has
ComNavOps warned about our headlong pursuit of networks as the advantage we’re
going to pin our war-winning hopes on?
If we can’t make even simple, isolated networks work reliably how are we
going to make staggeringly complex networks work in the face of enemy electronic
countermeasures and cyber attacks? The
desire to place all our hopes on data and networks is lunacy and this incident
is yet another piece of proof.
Electromagnetic
Issues – “The frequency spectrum that
SNTC operates in is a congested electromagnetic environment and susceptible to
interference that can result in difficulties controlling drone flight
operations.” (1)
What the military fails to grasp is that ALL frequencies,
across the entire spectrum, will be congested and susceptible to interference. This vulnerability will only get worse once
the enemy initiates electronic countermeasures, jamming, and cyber
attacks. We’re currently using the
electromagnetic (EM) spectrum as if it’s a free tool that we have exclusive and
unhindered rights to – and, in peacetime, that’s somewhat true. The enemy will quickly change that when war
comes. This is analogous to our
addiction to, and dependence on, GPS positioning. We need to accept that our free and easy use
of the EM spectrum will not continue in combat.
To that end, we need to build in much more simplicity, redundancy, and
brute force in our EM use. We also need
to train to operate in a compromised EM spectrum, something we’re only doing to
a very limited extent, right now. Every
exercise we do should include an OpFor dedicated to degrading our own EM
environment so that we learn what equipment works and what is vulnerable and
how to operate without an unhindered EM battlefield.
System Degradation
– “Prior to the launch of the BQM-74E
drones, one of which impacted CHV, the control team knew the target drone
control system had failed or exhibited abnormalities several times that day;”
(1)
Consider this statement:
Prior to the [fill in the blank] incident, it was well known
that problems existed in the [fill in the blank].
This statement appears in almost every incident ever
reported. The recent Burke collisions
were laced with known manning, training, and certification problems prior to
the incidents. The riverine boats that
got lost and were surrendered to the Iranians were known to have problems with
leadership, training, readiness, planning, and mechanical issues. And so on.
Despite this consistent element to every incident, the Navy
has made no effort to change the culture which encourages personnel to ignore
obvious problems. Until this changes,
incidents will continue unabated. This
is a leadership deficit, pure and simple, starting at the highest level.
Discrimination – “Based on previous tracking presentations,
drone tracks would coast and appear to be inbound to the ship even after
turning outbound.” (1)
We want to construct massive, regional, all-seeing,
all-knowing networks with perfect awareness and real-time data so that we can
bring our enemies to their knees with our overwhelming situational
knowledge. You’d think firepower would
play a part in victory, too, but our Navy leaders seem not to think that. But, I digress …
The point is that our very best Aegis radar system appears
to have a systemic “latency” or inertia in that the displayed tracks “coast”
toward the ship even though the actual object has turned away. Presumably, all tracks have this latent
inertia and, if so, that’s got to make missile intercepts a lot more
challenging since we never know whether that incoming missile that is engaged
in terminal maneuvering is actually where it appears or if it’s jinked onto a
new course! So, much for all-seeing,
all-knowing, real-time, perfect awareness!
If our very best sensor system has that kind of reality “delay”, you
have to question the very foundation of our network/data wishful thinking.
There was nothing in the reports indicating that this
latency inertia was a brand new phenomenon, just discovered in the course of
this incident - quite the opposite. It
appears to be a well known system flaw that has been around for quite some
time. So, why hasn’t it been
addressed? This ties back into the
System Degradation comments and the deficiencies and culpability of Navy
leadership.
Summary – Every incident
like this is yet another in an endless string of opportunities for the Navy to institute
real, positive, effective change and yet they never do. Instead, they write reports, generate long
lists of recommendations, create more and more layers of paperwork, and
accomplish nothing. The Navy’s biggest
problem is not maintenance, readiness, training, manpower, numbers of ships, or
anything of that nature. The biggest
problem is leadership – the total, complete absence of effective
leadership. Until that changes, nothing
else will improve.
__________________________________